Cтабилизатор тока на lm317 для светодиодов

Стабилизатор тока: схема, регулируемый, импульсный, конструкция и назначение. Модуль стабилизации напряжения и тока для светодиодных ламп на 220В. Виды стабилизаторов тока для светодиодов: на транзисторах и микросхемах.

Содержание

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:Стабилизаторы тока на транзисторах

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:Стабилизатор для светодиодов

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания – 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:Светодиодный светильник со стабилизацией тока

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:LED-светильник со стабилизатором тока

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать ~23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:Стабилизатор тока светодиодов

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы – ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Ток через светодиоды задается подбором резистора R1. VT1 – любой маломощный. Светодиоды – Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят!!!

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А – тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см2.

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал “земли”. Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:Выходная характеристика полевого транзистора

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Пример самого простого драйвера тока для светодиода представлен ниже:Генератор (стабилизатор) тока на MOSFET

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Типы стабилизаторов

Импульсные регулируемые постоянного тока

15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.

На данный момент есть несколько видов стабилизаторов напряжения и тока:

  1. линейные  до 10А и входным напряжением до 40В;
  2. импульсные с высоким входным напряжением, понижающие;
  3. импульсные с низким входным напряжением, повышающие.

На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам.  В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для питания светодиодов от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.

Про все способы питания светодиодов читайте в статье «Как подключить светодиод к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.

По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.

Конструкция и принцип работы

Стабилизатор обеспечивает постоянство тока при его отклонении

Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

  • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
  • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

Легко о простом. Сила тока, напряжение и их стабилизация

От напряжения зависит, насколько стремительно электроны движутся по проводнику. Многие страстные любители жёсткого компьютерного разгона увеличивают напряжение ядра центрального процессора, благодаря чему тот начинает функционировать быстрее.

Сила тока – это плотность движения электронов внутри электрического проводника. Данный параметр чрезвычайно важен радиоэлементам, работающим по принципу термоэлектронной вторичной эмиссии, в частности, источникам света. Если площадь поперечного сечения проводника не в состоянии пропустить поток электронов, избыток тока начинает выделяться в виде тепла, вызывая значительный перегрев детали.

Плазменная дуга от высокого напряженияПлазменная дуга от высокого напряжения

Для лучшего понимания процесса проанализируем плазменную дугу (на её основе работает электроподжег газовых плит и котлов). При очень высоком напряжении скорость свободных электронов до такой степени велика, что они могут легко «пролетать» расстояние между электродами, формируя плазменный мостик.

Электрообогреватель работает за счет силы тока

А это электронагреватель. При прохождении через него электронов они передают свою энергию нагревательному элементу. Чем выше сила тока, тем плотнее поток электронов, тем сильнее нагревается термоэлемент.

Для чего необходима стабилизация тока и напряжения

Любой радиоэлектронный компонент, будь то лампочка или центральный процессор компьютера, требует для оптимальной работы чётко лимитированное количество электронов, которое течёт по проводникам.

Поскольку речь в нашей статье идёт о стабилизаторе для светодиодов, о них и поговорим.

При всех своих преимуществах светодиоды имеют один минус – высокая чувствительность к параметрам питания. Даже умеренное превышение силы и напряжения может привести к выгоранию светоизлучающего материала и выходу из строя диода.

Сейчас очень модно переделывать систему освещения автомобиля под LED освещение. Их цветовая температура намного ближе к естественному освещению, чем у ксенона и ламп накаливания, что значительно меньше утомляет водителя при длительных поездках.

Однако это решение требуется особый технический подход. Номинальный ток питания автомобильного LED-диода – 0,1-0,15 мА, а пусковой аккумулятора – сотни ампер. Этого хватит, чтобы выжечь очень много дорогостоящих элементов освещения. Что бы этого избежать используют стабилизатор 12 вольт для светодиодов в авто.

Ампераж в автомобильной сети постоянно меняется. Например, автомобильный кондиционер «кушает» до 30 ампер, при его отключении электроны, «выделенные» на его работу уже не вернутся назад в генератор и аккумулятор, а перераспределятся между остальными электроприборами. Если лампе накаливания, рассчитанной на 1-3 А дополнительные 300 мА роли не сыграют, то диоду с током питания 150 мА несколько таких скачков могут стать фатальными.

Ради гарантии длительной работы автомобильных светодиодов используют стабилизатор тока на lm317 для мощных светодиодов.

Nissan Qashqai 2012, двигатель бензиновый 1.6 л., 117 л. с., передний привод, вариатор — электроника

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Все комментарии

О соотношении размеров инерционного стабилизатора

При отклонении камеры от горизонтальной оси, оператор вынужден фиксировать ручку стабилизатора в руке. Момент силы, передающийся руке оператора, прямо пропорционален длине вертикальной планки и весу камеры, и обратно пропорционален диаметру ручки. Поэтому, удобство управления камерой зависит от диаметра ручки. Для улучшения тактильных ощущений о положении ручки в руке, полезно сделать на ней небольшие концентрические углубления.

Нужно сказать, что размеры каждой детали стабилизатора, являются компромиссом между теми или другими параметрами устройства.

Например, чем тоньше ручка, тем труднее стабилизировать стедикам при ускорении, но чем толще ручка, тем слабее тактильное ощущение горизонта.

Другим компромиссом является выбор между размерно-весовыми показателями конструкции и качеством стабилизации. Чем длиннее горизонтальная планка и тяжелее грузики на её концах, тем выше качество стабилизации. Однако, при увеличении длины горизонтальной планки, её конец может попасть в поле зрения объектива, а увеличение веса делает переноску оборудования малокомфортной. Я не рекомендую увеличивать вес снаряжённого стабилизатора более 2,5кг, а предельный размер лучше подогнать под любимый кофр.

Простой стабилизатор напряжения для светодиодов

Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.

Все что нам понадобиться:

  • – микросхема – линейный стабилизатор напряжения L7812,
  • – пару клемм,
  • – пара конденсаторов 100n.
  • – кусок текстолита для платы,
  • – термоусадочная трубка.

Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

схема стабилизатора для светодиодов на микросхеме lm317

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

линейный стабилизатор тока на микросхеме LM317

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

R1=1.25*I0.

Мощность, рассеиваемая на резисторе равна:

W=I2R1.

Как сделать стабилизатор тока для светодиодов самостоятельно

Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

На основе драйверов

Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

Сборка осуществляется по следующему алгоритму:

  1. Припаять проводники к среднему и крайнему выводу резистора.
  2. Перевести мультиметр в режим сопротивления.
  3. Замерить параметры резистора – они должны равняться 500 Ом.
  4. Проверить соединения на целостность и собрать цепь.

На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

Стабилизатор для автомобильной подсветки

Стабилизатор L7812

Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

  1. Выбор схемы под L7805 из даташита.
  2. Вырезать из текстолита нужный по размеру кусок.
  3. Наметить дорожки, делая насечки отверткой.
  4. Припаять элементы так, чтобы вход был слева, а выход – справа.
  5. Сделать корпус из термотрубки.

Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

В качестве радиатора задействуется кузов машины за счет соединения центрального вывода корпуса с минусом.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема стабилизатора

Стабилизатор для светодиодов и ДХО

Схема взята из даташита на микросхему L7805.

Стабилизатор для светодиодов и ДХО

Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

регулируемый стабилизатор тока для светодиодов

Что такое стабилизатор

Наверное, вы уже сами поняли, что стабилизатор – это прибор, с помощью которого выравнивается ток в независимости от скачков напряжения в сети. Существует два их типа: линейный и импульсный. Первый регулирует все параметры на выходе за счет распределения мощности между своим собственным сопротивлением и нагрузкой. Второй же намного эффективнее, потому что отдает светодиодам столько мощность, сколько им необходимо. В нем действует принцип широтно-импульсной модуляции.

При этом импульсный прибор обладает неплохим коэффициентом полезного действия, которые не падает ниже 90%. Правда, у этого прибора достаточно сложная схема в сравнении с линейным вариантом, отсюда и высокая стоимость изделия.

Кстати, стабилизаторы LM317 могут быть использованы только для линейных схем. Использовать его в цепях с большими токами нельзя. А вот для светодиода он подойдет в самый раз. В импульсных приборах рекомендуется использовать схемы HV9910.

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900.  Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Микросхема LM 317 (стабилизатор тока для светодиодов в автомобиле)

Можно применять стабилизаторы напряжения 12 вольт для светодиодов в автомобильном исполнении. Подсветка панелей, номерных знаков, установка белых led-ламп в качестве габаритных или ходовых огней – вот только несколько точек установки.

Led-лента на фаре авто

Led-лента на фаре авто

Внимание! Долговечность диода, излучающего свет, зависит не столько от стабильного напряжения питания, сколько от протекающего через него тока. Если элементы модели AlInGaP/GaAs могут переносить перегрузки по току, то led-диоды на основе GaInN/GaN не продержатся и пары часов.

Ровное свечение излучающих диодов при различных подключениях (параллельно или последовательно включенные цепочки) возможно при одинаковых значениях тока.

Принцип действия полевого транзистора

Полевой транзистор состоит из трех электродов – истока, стока и затвора. Вход заряженных частиц происходит через исток, а выход – через сток. Закрытие или открытие потока частиц осуществляется с помощью затвора, выполняющего функции крана. Заряженные частицы будут течь лишь при условии напряжения, которое должно быть приложено между стоком и истоком. Если напряжение отсутствует, то и тока в канале не будет. Следовательно, чем выше подаваемое напряжение, тем больше открывается кран. За счет этого ток в канале между стоком-истоком увеличивается, а сопротивление канала – уменьшается. Для источников питания предусмотрена работа полевых транзисторов в режиме ключа, обеспечивающая полное открытие или закрытие канала.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

Схема стабилизатора

Итак, чтобы решить проблему, поставленную выше, необходимо выбрать обычный стабилизатор, к примеру, можно взять прибор марки LM317, и установить его в питающую схему, соединив со светодиодной лампой через резисторы. Вот эта схема:

Схема стабилизатора

Правда, придется сделать предварительно некоторые расчеты, основной из которых – это расчет силы тока. Для этого можно воспользоваться известным законом Ома, который гласит, что сила тока равна соотношению мощности и напряжения. Мощность светодиода написана на его корпусе, напряжение берется в зависимости от того, куда подключается сам источник света. Это может быть 220, 36, 24 или 12 вольт.

Внимание! Если вами выбран китайский светодиод, то силу тока лучше всего проверить через мультиметр. Практика показывает, что китайские производители неправильно указывают параметры своих изделий, так что вероятность искажения высока.

Итак, параметры светодиодного светильника известны, остается подсчитать параметры резисторов, которые будут установлены в схему стабилизатора. Для этого существует большое количество различных онлайн калькуляторов, поэтому заморачиваться на расчете своими руками нет необходимости. Один из таких калькуляторов находится вот по этому адресу

( 1 оценка, среднее 5 из 5 )

Универсальная регулируемая модель

Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.

Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.

Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...